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THEORY OF THE LATTICE BOLTZMANN METHOD: LATTICE BOLTZMANN

MODELS FOR NON-IDEAL GASES

LI-SHI LUO�

Abstract. In this paper a procedure for systematic a priori derivation of the lattice Boltzmann models for

non-ideal gases from the Enskog equation (the modi�ed Boltzmann equation for dense gases) is presented.

This treatment provides a uni�ed theory of lattice Boltzmann models for non-ideal gases. The lattice

Boltzmann equation is systematically obtained by discretizing the Enskog equation in phase space and

time. The lattice Boltzmann model derived in this paper is thermodynamically consistent up to the order

of discretization error. Existing lattice Boltzmann models for non-ideal gases are analyzed and compared

in detail. Evaluation of these models are made in light of the general procedure to construct the lattice

Boltzmann model for non-ideal gases presented in this work.

Key words. kinetic method, Enskog theory, non-ideal gases, lattice Boltzmann equation

Subject classi�cation. Fluid Mechanics

1. Introduction. In recent years, there has been signi�cant progress made in the development of the

lattice Boltzmann equation (LBE) method [48, 29, 28, 6, 10, 1, 38], a novel technique developed for modeling

various complex systems, especially complex uids. One particular application of the lattice Boltzmann

method which has attracted considerable attention is the modeling of inhomogeneous uids, such as non-

ideal gases or multi-component uids [21, 18, 19, 20, 59, 59, 61, 62, 51, 50, 27, 46]. These ows are important,

but are di�cult to simulate by conventional techniques for solving the Navier-Stokes equations. The main

di�culty conventional techniques face is due to the interfaces in inhomogeneous ow. Computationally,

one might be able to track a few, but certainly not very many interfaces in a system. It is therefore

impractical to simulate a realistic system, which is inhomogeneous in density or composition, by directly

solving the Navier-Stokes equations without making some drastic approximations. One can also view this

problem from a di�erent perspective: Interfaces between di�erent components or phases of a uid system are

thermodynamic e�ects resulting from interactions among molecules. To solve the Navier-Stokes equations,

one needs to know the equation of state, which is usually unknown in the interfacial regions. It is therefore

di�cult to incorporate thermodynamics into the Navier-Stokes equations in a consistent fashion, although the

interfaces are precisely the result due to thermodynamical e�ects. Hence one encounters some fundamental

di�culties.

There exists ample evidence that models based on the lattice Boltzmann equation, and its predecessor,

the lattice-gas automata (LGA) [14, 65, 15], and other gas kinetic models [53, 68, 37], are particularly suitable

for complex systems such as non-ideal gases and multi-component uids [59, 60, 61, 62, 51, 50, 27]. There may

be profound reasons for the success of the LGA and LBE models in simulating those complex systems. The

LGA and LBE models do not start at the macroscopic level; instead, they start at mesoscopic level at which

one can use a \potential" to model interactions in the system. Macroscopic or hydrodynamic behaviors of the

system naturally emerge from mesoscopic dynamics, provided that the mesoscopic dynamics possesses the

�ICASE, Mail Stop 132C, NASA Langley Research Center, 3 West Reid Street, Building 1152, Hampton, VA 23681-2199

(email address: luo@icase.edu). This research was supported by the National Aeronautics and Space Administration under

NASA Contract No. NAS1-97046 while the author was in residence at ICASE, NASA Langley Research Center, Hampton, VA
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necessary and correct conservation laws with associated symmetries such as rotational invariance, Galilean

invariance, etc. It is well known that the macroscopic behavior of a hydrodynamic system is rather insensitive

to the microscopic or mesoscopic details | the details of microscopic or mesoscopic dynamics only a�ect the

numerical values of the transport coe�cients. This observation is a key physical insight in the construction

of simplistic kinetic models such as the lattice gas automata and the lattice Boltzmann equation.

Historically, the lattice Boltzmann equation was �rst developed empirically [48, 29, 28, 6] from its

predecessor | the lattice-gas automata [14, 65, 15]. This empiricism inuences even the most recent lattice

Boltzmann models [59, 60, 62, 61, 51, 50, 27]. Empirical lattice Boltzmann models usually have some inherent

artifacts which are not yet fully understood. One particular problem with non-ideal gases or multi-component

lattice Boltzmann models is the thermodynamic inconsistency: The so-called \equilibrium state" in these

models cannot be described by thermodynamics. In particular, one has di�culties in de�ning an entropy of

the system systematically, and thus leading to, for instance, the inconsistency between the thermodynamic

pressure and the kinetic one [9]. Although this issue has been previously mentioned [62, 61], no progress has

been made in solving this problem, despite its paramount importance.

It is well understood that the original Boltzmann equation only describes rare�ed gases; it does not

describe dense gases or liquids. In the Boltzmann gas limit (BGL), N ! 1, m ! 0, and r0 ! 0, Nm !
�nite, Nr20 ! �nite, and Nr30 ! 0, where N , m, and r0 are the particle number, particle mass, and

interaction range, respectively. Thus, in the BGL, the mean free path l � 1=Nr20 remains constant, while

the total interaction volume Nr30 goes to zero. Therefore, in the strict thermodynamic sense, the Boltzmann

equation only retains the thermodynamic properties of a perfect gas | there is no contribution to the

transport of molecular properties from inter-particle forces, although collisions inuenced by interparticle

interaction are considered. In order to properly describe non-ideal dense gases, the e�ect of �nite particle

size, for instance, must be explicitly considered. It was Enskog who �rst extended the Boltzmann equation

to dense gases by including the volume exclusion e�ect along the rationale of van der Waals theory [5], which

leads to a non-ideal gas equation of state. The Enskog equation (the modi�ed Boltzmann equation for dense

gases) can indeed describe dense gases or liquids with non-ideal gas equation of state to certain extend. The

Enskog equation describes a system consisting of hard spheres and it has been shown that the hard-sphere

system captures most qualitative properties of a simple liquid [22, 57]. Furthermore, the revised Enskog

theory seems to be valid for a wide range of density covering gas, liquid, and even solid [12].

It has been recently demonstrated [25, 26] that the lattice Boltzmann equation can be directly derived

from the continuous Boltzmann equation. The method proposed in Refs. [25, 26] is a general procedure to

construct the lattice Boltzmann models in a systematic and a priori fashion. Through this procedure we can

better understand the approximation made in the lattice Boltzmann equation. The method also provides

a means to analyze the existing lattice Boltzmann models. In this paper, the method of Refs. [25, 26] is

applied to obtain the lattice Boltzmann equation for non-ideal gases (which have non-ideal gas equation of

state). The lattice Boltzmann equation for non-ideal gases is derived from the Enskog equation for dense

gases. The obtained lattice Boltzmann model for isothermal non-ideal gases has thermodynamic consistency

in the sense of approximation, i.e., it is only correct up to the order of discretization. In comparing all

existing models, we would like to stress the fact that many defects of the existing LBE models are due to

errors made at the level of fundamental concepts, rather than at the level of numerical implementation.

This paper is a detailed extension of a work previously published [43], and is organize as follows. In Sec. 2

the Enskog equation for dense gases with BGK approximation is briey discussed. In Sec. 3 the discretization

procedure to obtain the lattice Boltzmann equation for non-ideal gases from the Enskog equation is described.
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The discretization in time and phase space, small velocity expansion of the equilibrium distribution, and

realization of the forcing term in the lattice Boltzmann equation are also discussed in detail. In Sec. 4 the

hydrodynamics and some related thermodynamical quantities of the model are given. In Sec. 5 the model

derived in this work is compared with other existing lattice Boltzmann models for non-ideal gases, and the

similarities and di�erences among the existing models are explicitly shown. Sec. 6 concludes the paper. A

more detailed discussion on the Enskog equation for dense gases and derivation of the collision term leading

to non-ideal gas equation of state are provided in Appendix A. The Chapman-Enskog analysis for the lattice

Boltzmann model for non-ideal gases is demonstrated in Appendix B. In Appendix C, the forcing term in the

Boltzmann equation is directly derived from an equilibrium distribution function shifted by the acceleration

due to an external �eld. This derivation provides a simple and clear derivation of the models utilizing the

external force to mimic the non-ideal gas e�ect.

2. Enskog Equation for Dense Gases. The Enskog equation [5, 30, 23] explicitly includes the radius

of colliding particles, r0, in the collision integral:

@tf + � �rf + a�r�f = J ;(2.1a)

J =

Z
d�1 [g(x+ r0r̂)f(x; �

0)f(x+ 2r0r̂; �
0
1)� g(x� r0r̂)f(x; �)f(x� 2r0r̂; �1)] ;(2.1b)

where f is the single particle (mass) distribution function, � and a are particle velocity and acceleration,

g is the radial distribution function, r̂ is the unit vector in the direction from the center of the second

particle of f(x; �1) to the center of the �rst particle of f(x; �) at the instant of contact during a collision,

and �1 is the collisional space of the second particle of f(x; �1). If we expand the collision operator J in

a Taylor series about x, use the BGK approximation [2, 23, 63, 40], and assume the uid to be isothermal

and incompressible, we obtain the following equation (details refer to Appendix A):

@tf + � �rf + a�r�f = � g
�
[f � f (0)] + J 0 ;(2.2a)

J 0 = �f (0) b� g (� � u)�r ln(�2g) ;(2.2b)

where � is the relaxation time which characterizes a typical collision process, and f (0) is the Maxwell local

equilibrium distribution function [47] given by

f (0)(�; u; �) =
1

z
�0(2��)

�D=2 exp
��(� � u)2=2� � U(x)=�

�
;(2.3)

where D is the dimension of the momentum space �; �, u, and � = kBT=m are mass density, macro-

scopic velocity, and the normalized temperature, respectively; kB , T , and m are the Boltzmann constant,

temperature, and molecular mass, respectively; U(x) is a mean-�eld external potential (per unit mass),

�0 =
1

V

Z
dxd� f (0)(2.4)

is the average mass density in the system of volume V , and

z(�) � 1

V

Z
V

dx exp[�U(x)=�] :(2.5)

The additional collision term, J 0 in Eqs. (2.2), includes the volume exclusion e�ect (see Appendix A for

details). In the original work of Enskog, g = g(b�), and b is the second virial coe�cient in the virial

3



expansion of the equation of state for the hard-sphere system [5]. The hydrodynamic moments, i.e., mass

density �, velocity u, normalized temperature �, and energy density e can be de�ned as follows:

� =

Z
d�f (0) =

Z
d�f =

1

z
�0 exp(�U=�) ;(2.6a)

�u =

Z
d��f (0) =

Z
d��f ;(2.6b)

D

2
�� =

Z
d�

1

2
(� � u)2f (0) =

Z
d�

1

2
(� � u)2f ;(2.6c)

�e =

Z
d�

�
1

2
(� � u)2 + U(x)

�
f (0) =

Z
d�

�
1

2
(� � u)2 + U(x)

�
f :(2.6d)

The acceleration a is purely due to an external �eld, U(x), i.e.,

a � _� = �rU :(2.7)

For the Enskog equation or the revised Enskog equation, both global [56] and local [44, 45, 52] H-theorem

can be proved.

To emphasize that the acceleration a is strictly due to an external �eld or its equivalent, the derivation of

the Boltzmann equation via the BBGKY hierarchy is briey reviewed in the following. Given a Hamiltonian

system of N particles, the N -particle distribution function fN (x
(N); �(N); t) satis�es the following Liouville

equation:

@tfN +
NX
i=1

�
�i �ri + _�i �r�i

�
fN = 0;(2.8)

where ri � rxi , x(N) � fx1; x2; : : : ; xNg (similar for �(N)), and

_�i = ai �
X
j 6=i

rjV (kxi � xjk) = �riU �
X
j 6=i

rjVij ;(2.9)

and ai = �riU is the acceleration due to external force (one-body interaction U), and Vij � V (kxi � xjk)
is the two-body interaction potential among the particles (Vii = 0). By distinguishing the external �eld and

interparticle interactions, the Liouville equation can be rewritten as the following:

@tfN +

NX
i=1

(�i �ri + ai �r�i) fN =

NX
i=1

X
j 6=i

rjVij � r�ifN :(2.10)

The reduced distribution function, fM for 1 �M < N ,

fM �
Z
dx(N�M)d�(N�M) fN ;

where x(N�M) � fxN�M+1; xN�M+2; : : : ; xNg (and similar for �(N�M)), satis�es the following equation

[22, 23]:

@tfM +
MX
i=1

(�i �ri + ai �r�i) fM = (N �M)
MX
i=1

Z
dxM+1d�M+1rM+1Vi;M+1 � r�ifM+1 ;(2.11)

The above equation is the celebrated BBGKY hierarchy. The �rst equation in the hierarchy for the single

particle distribution function f(x; �; t) � f1(x1; �1; t) is:

@tf + � �rf + a�r�f = (N � 1)

Z
dx2d�2r2V12 � r�f2(x; �; x2; �2; t) ;(2.12)
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where a � a1 = �r1U is purely an e�ect due to the external �eld U . The two-particle distribution function

f2 can be decomposed symbolically as the following:

f2(x1; �1; x2; �2; t) = C2(x1; x2; t)f(x1; �1; t)f(x2; �2; t) ;(2.13)

where C2(x1; x2; t) is a pair correlation function [23, 35]. Depending on the approximation applied to the

pair correlation C2(x1; x2; t), di�erent closure would result from the kinetic equation (2.12) [23, 35]. For

example, with the approximation that either g2 = 1, i.e.,

f2(x1; �1; x2; �2; t) = f(x1; �1; t)f(x2; �2; t) ;

or C2(x1; x2; t) = g(kx1�x2k), where g is the radius distribution function for the hard sphere system, i.e.,

f2(x1; �1; x2; �2; t) = g(kx1 � x2k)f(x1; �1; t)f(x2; �2; t) ;
the �rst equation of the BBGKY hierarchy, Eq. (2.12), leads to either the Boltzmann equation or the Enskog

equation, respectively [23, 35].

It is apparent that the acceleration a is due to a self-consistent external �eld which is one-body interaction

in nature, as clearly and explicitly illustrated in the derivation of the Boltzmann equation from Liouville

equation via BBGKY hierarchy [23, 30, 35, 36, 40]. In other words, the potential U in the Maxwellian

de�ned by Eq. (2.3) only represents an external �eld of body-force type, and this self-consistent mean-�eld

interaction should not be confused with genuine multi-body interactions which take place in non-ideal gases.

In the Boltzmann equation, all the interactions among particles (multi-body interactions) involved in a

collision process are considered in the collision operator, represented by collision cross section. In particular,

the collision operator reduces to a parameter � of the single relaxation time in the case of the BGK equation.

In the limit of BGL, the interactions among particles have no e�ect other than changing the numerical value

of the viscosity, as clearly illustrated by the BGK model. Therefore, non-ideal gas e�ects are not included in

the Boltzmann equation. To exhibit non-ideal gas e�ects in the thermodynamical limit, the �nite range of

the interactions among particles in the same limit (the �nite size e�ect or the volume exclusion e�ect), which

causes non-ideal gas e�ects, must be explicitly considered. As is shown in detail later in Sec. 5, the existing

LBE models use some form of one-body interaction to mimic non-ideal gas e�ects. While this approximation

of multi-particle interaction by a mean-�eld one-body interaction seems to allow LBE models to simulate

isothermal non-ideal gases because the e�ect of pressure and forcing can be distinguishable in the momentum

equation. However, this is no longer true in the energy equation. Pressure and forcing act quite di�erently

in the energy equation: the former a�ects the energy transport as Pr � u whereas the latter does work as

�a �u. In addition, the multi-particle interactions a�ect the heat conductivity whereas the forcing does not.

This suggests some inevitable adverse consequences of the approximation. The only way to correctly model

non-ideal gases is to at least include the \�nite size e�ect" explicitly. And the Enskog equation is one such

model.

A formal solution of the Enskog equation with BGK approximation, Eq. (2.2), can be obtained by

integrating along characteristic line � over a time interval of length �t [36]:

f(x+ ��t +
1

2
a�2t ; � + a�t; t+ �t) = e��tg=� f(x; �; t) +

g

�
e��tg=�

Z �t

0

et
0g=� f (0)(x(t0); � + at0; t+ t0) dt0

+e��tg=�
Z �t

0

et
0g=� J 0(x(t0); � + at0; t+ t0) dt0 � e��tg=�a �

Z �t

0

et
0g=�r�f(x(t0); � + at0; t+ t0) dt0 ;(2.14)

where x(t0) = x(t) + �t0 + 1
2at

02 is the (approximated) trajectory under the inuence of the external �eld.1

1We neglected the term of t
02 in [43] because it does not a�ect the �nal result.
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The approximation is made by the assumption that the acceleration a is a constant locally. Note that the

above equation is implicit because of not only the term r�f , but also the time-dependence of hydrodynamic
moments �, u, and � in the equilibrium f (0), and J 0.

Our derivation of the lattice Boltzmann equation is based upon the discretization of the above integral

solution of the Enskog equation. In what follows, we show that the lattice Boltzmann equation is an explicit

�nite di�erence scheme for solving the above integral solution of the Enskog equation.

3. Derivation of Lattice Boltzmann Equation.

3.1. Discretization in time. By using the mean-value theorem, we can rewrite the integral solution

of the BGK Enskog equation, Eq. (2.14), as follows:

f(x+ ��t +
1

2
a�2t ; � + a�t; t+ �t) = e��tg=� f(x; �; t) +

1

�
e��t(1��)g=�f (0)(x(��t); � + a��t; t+ ��t) �t

+e��t(1��)g=�J 0(x(��t); � + a��t; t+ ��t) �t � e��t(1��)g=�a�r�f(x(��t); � + a��t; t+ ��t) �t ;(3.1)

where � is a constant between 0 and 1, and x(��t) � x(t) + ���t +
1
2a(��t)

2. If we assume that �t is small

enough and f (0), J 0, and r�f are smooth enough locally in phase space, we can neglect the terms of the

order O(�2t ) or smaller in the Taylor expansion of Eq. (3.1), and obtain

f(x+ ��t; �; t+ �t)� f(x; �; t) = �1

�
[f(x; �; t)� f (0)(x; �; t)] + J 0(x; �; t) �t � a�r�f(x; �; t) �t ;(3.2)

where � � �=�t is the dimensionless relaxation time. It is obvious that the accuracy of the above equation

is only �rst order in time. Consequently the accuracy of the lattice Boltzmann equations derived from the

above equation is also �rst order in time in principle.

3.2. Low Mach number expansion and phase space discretization. There are two steps in the

derivation of lattice Boltzmann equation from Eq. (3.2): (a) construction of an appropriate equilibrium dis-

tribution function, and (b) a coherent discretization of phase space. For the isothermal case, the equilibrium

distribution function can be obtained by truncation of the Taylor expansion of f (0) up to the second order

in u:

f (eq) =
1

z
�0(2��)

�D=2 exp(�U=�) exp(��2=2�)
�
1 +

(� �u)
�

+
(� �u)2
2�2

� u2

2�

�

= �!(�)

�
1 +

(� �u)
�

+
(� �u)2
2�2

� u2

2�

�
;(3.3)

where

!(�) = (2��)�D=2 exp
���2=2�� :(3.4)

The phase space discretization has to be done in such way that not only all the hydrodynamic moments,

but also their corresponding uxes are preserved exactly. This implies that the following quadrature must

be evaluated exactly: Z
d� �k f (eq) ; 0 � k � 3 ;(3.5)

for isothermal models. (Here we require that not only all the hydrodynamic moments, but also the corre-

sponding uxes, are computed exactly by the quadrature. This requirement is perhaps more stringent than
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necessary because energy ux is usually not considered in the isothermal case.) Because of the second order

polynomial contained in f (eq) given by Eq. (3.3), the quadrature which must be evaluated exactly is:Z
d� �k exp(��2=2�) ; 0 � k � 5 :(3.6)

Because of the exponential function in the above integral, Gaussian quadrature [7] is a natural choice for

the evaluation of the integral. With a k-th order polynomial  k(x) of x, Gaussian quadrature de�ned by the

following equation,

Z 1

�1

dx k(x) e
�x2=2 =

nX
�=1

W� k(x�) ;(3.7)

is exact for 0 � k � 2n�1, whereW� and x� are the weights and the abscissas of the quadrature, respectively.

3.3. The forcing term. The forcing term, a �r�f , must be constructed explicitly in the lattice Boltz-

mann equation. We use the moment constraint to construct this term. The moments (up to the second

order) of the forcing term are:Z
d� a�r�f =

Z
d� a�r�f (0) = 0 ;(3.8a) Z

d� � a�r�f =

Z
d� � a�r�f (0) = ��a ;(3.8b) Z

d� �i�j a�r�f =

Z
d� �i�j a�r�f (0) = ��(aiuj + ajui) :(3.8c)

Here, we have noted that f can be replaced (or approximated) by f (0) without a�ecting the moments of the

forcing term up to the second order in � | in general the replacement of f by f (0) does not hold for the

moments higher than the third order in �. This is owing to the fact that f and f (0) have exactly the same

conserved (or hydrodynamic) moments, a constraint on the normal solution of the Boltzmann equation in

the Chapman-Enskog analysis.

The forcing term, a�r�f , can be written in terms of an expansion in � as follows:

a�r�f = �!(�)
h
c(0) + c

(1)
i �i + c

(2)
ij �i�j + � � �

i
;(3.9)

where the Einstein notation of summation for the repeated Roman indices i, j, . . . , is used. The �rst few

coe�cient c
(n)
i1i2���in

can be easily obtained by using the moment constraints given by Eqs. (3.8) if the above

expansion is truncated. With the truncated expansion up to the second order in � and the �rst order in u,

we obtain

c(0) =
1

�2T
a�u ;(3.10a)

c
(1)
i = � 1

�2T
ai ;(3.10b)

c
(2)
ij = � 1

2�4T
(aiuj + ajui) ;(3.10c)

where �T �
p
� is proportional to the thermal velocity of a particle at temperature T . Therefore, up to the

order of O(u) and O(�2), we have

a�r�f = ��!(�) ��2T

�
(� � u) + ��2T (� �u) ���a :(3.11)
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Note that in the above expansion, only the terms up to the �rst order in u have been retained, because there

is an overall factor of �t in the forcing term, as indicated in Eq. (3.2). And �t is of O(u) in the Chapman-

Enskog analysis for the lattice Boltzmann equation (see Appendix B for explanation). It should be stressed

that every term in the Boltzmann equation must be treated equally in terms of maintaining the accuracy.

Speci�cally speaking, the expansion of the forcing term must be of the second order in � and the same in the

small expansion parameter �t, in order to be consistent with the expansion of the equilibrium. It should be

noted that there are other methods to compute the expansion of the forcing term. Up to the second order in

�, and the �rst order in u, the expansion of a�r�f (0) is identical to that of a�r�f because of the constraints

given by Eqs. (3.8). Therefore, the result of Eq. (3.11) can be obtained by computing a�r�f (0) explicitly.

It should be pointed out that there is another way to include the e�ect of the forcing due to an external

�eld. Assuming that multi-body interactions among the particles in the system are of short-range and the

mean-free-path of a particle is much larger than the interaction range, then a particle is accelerated only by

the external �eld between collisions. Thus the net e�ect of the acceleration due to the external �eld during

the mean-free-time is an increment of particle velocity. Therefore one can use an equilibrium distribution

function with a velocity shift to account for the e�ect of the forcing due to the external �eld [66], i.e.,

f (0)(�; u; �) becomes f (0)(�; u � a��t; �) at the presence of the external �eld. Naturally, the accelerated

equilibrium distribution function f (0)(�; u�a��t; �) leads to a forcing term in the lattice Boltzmann equation

when discretized (see Appendix C for details). It should be noted that these two approaches are equivalent

up to the �rst order in �t. At higher order of �t the velocity shift in the equilibrium distribution will introduce

nonlinear terms which are di�erent from what derived from the continuous equation.

3.4. 2D nine-velocity model on square lattice. We now use the 2D nine-velocity LBE model on

a square lattice space as a concrete example to illustrate our discretization scheme. A Cartesian coordinate

system (in �-space) is used in this case, and accordingly we set  (�) = �kx�
l
y . Thus the quadrature needed

to be evaluated is the following:

I = �k+l+2T IkIl ;(3.12)

where

Ik �
Z 1

�1

d� �ke��
2=2 ;(3.13)

and � = �x=�T or �y=�T . Naturally, the third-order Hermite formula [7] is the optimal choice to evaluate

Ik for the purpose of deriving the 9-bit LBE model, i.e., Ik =
P3

j=1 !j�
k
j : The three abscissas (�j) and the

corresponding weights (!j) of the quadrature are:

�1 = �
p
3 ; �2 = 0 ; �3 =

p
3 ;(3.14a)

!1 =
p
�=6 ; !2 = 2

p
�=3 ; !3 =

p
�=6 :(3.14b)

Then, the integral of Eq. (3.7) becomes:

I = 2�2T

"
!22 (0) +

4X
�=1

!1!2 (��) +

8X
�=5

!21 (��)

#
;(3.15)

where �� is the zero velocity vector for � = 0, one of the vectors of
p
3 �T (�1; 0) and

p
3 �T (0; �1) for

� = 1{4, and one of the vectors of
p
3 �T (�1; �1) for � = 5{8. Note that the above quadrature is exact for

the integral de�ned by Eq. (3.13) when k � 5.
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Now momentum space is discretized with nine discrete velocities f��j� = 0; 1; � � � ; 8g. To obtain the

9-bit model, con�guration space is discretized accordingly, i.e., it is discretized into a square lattice space

with a lattice constant �x =
p
3 �T �t. It should be stressed that the temperature T (or �) is a constant here

because we are only dealing with an isothermal model. We can therefore choose �x to be a fundamental

quantity instead, thus
p
3 �T = c � �x=�t, or � = �2T = c2=3. Thus, phase space is discretized coherently:

the discretizations of the velocity space and the con�guration space are closely coupled together. This is one

feature of the lattice Boltzmann equation distinctive from other �nite di�erence schemes.

By comparing Eqs. (3.7) and (3.15), we can identify the weights de�ned in Eq. (3.7):

W� = 2� �2T exp(�2�=2�
2
T )w� ;(3.16)

where

w� =

8><
>:

4=9; � = 0;

1=9; � = 1; 2; 3; 4;

1=36; � = 5; 6; 7; 8:

(3.17)

Then, the equilibrium distribution function for the 9-bit model is:

f (eq)� =W� f
(eq)(x; ��; t) = w� �

�
1 +

3(e� � u)
c2

+
9(e� � u)2

2c4
� 3u2

2c2

�
;(3.18)

where

e� =

8><
>:

(0; 0); � = 0 ;

(cos��; sin��) c; � = 12; 3; 4;

(cos��; sin��)
p
2 c; � = 5; 6; 7; 8;

(3.19)

and �� = (�� 1)�=2 for � = 1{4, and �� = (�� 5)�=2 + �=4 for � = 5{8.

3.5. Discretized forcing term. Applying the same discretization to the forcing term of Eq. (3.11),

we have the discretized forcing term for the nine-velocity model:

F� = �3w� �

�
1

c2
(e� � u) + 3

(e� �u)
c4

e�

�
�a :(3.20)

The forcing in the above equation satis�es the following constraints:X
�

F� = 0 ;(3.21a)

X
�

e� F� = ��a ;(3.21b)

X
�

e�;ie�;j F� = �� (uiaj + ujai) :(3.21c)

The above constraints are the discrete counterpart of Eqs. (3.8). If only the �rst two moment equations in

Eqs. (3.21) are to be satis�ed, and the third constraint of Eq. (3.21c) is replaced byX
�

e�;ie�;j F� = 0 ;(3.22)

the forcing term thus reduces to

F� = �3w� �
(e� �a)
c2

:(3.23)
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The above forcing term is what has been often used for constant body force in the literature [41, 42]. One

adverse consequence of using the above forcing term is that the Galilean invariance is lost if a is not a

constant in space. In addition, the work by forcing, �a �u, does not appear in the energy balance equation,

and thus leads to an incorrect energy balance equation. As shown in Sec. 5, the forcing terms of similar

forms are used to produce various non-ideal gas e�ects in previous models [59, 60, 62, 61, 51, 50, 27].

3.6. The lattice Boltzmann equation. The additional collision term, J 0 of Eq. (2.2b), can be ex-

plicitly written in the discrete form:

J 0� = �f (0) b� g (e� � u)�r ln(�2g) :(3.24)

With the discretized J 0 included, the lattice Boltzmann equation for dense gases is:

f�(x+ e��t; t+ �t)� f�(x; t) = �g
�

h
f�(x; t)� f (eq)� (x; t)

i
�b � g f (eq)� (x; t) (e� � u)�r(�2g)� F� �t ;(3.25)

where the forcing term, F�, is given by Eq. (3.20). The hydrodynamic moments in the lattice Boltzmann

models are given by

� =
X
�

f� =
X
�

f (eq)� ;(3.26a)

�u =
X
�

e�f� =
X
�

e�f
(eq)
� ;(3.26b)

�� =
1

2

X
�

(e� � u)2f� =
1

2

X
�

(e� � u)2f (eq)� :(3.26c)

The additional collision term, J 0�, involves the density gradient, r�, which can be explicitly computed by

either the second order central di�erencing

e� �r�(x) �t = 1

2
[�(x+ e��t)� �(x� e��t)] ;

or the �rst order di�erencing

e� �r�(x) �t = �(x+ e��t)� �(x) :

The other alternative would be to construct a collision term similar to the original Enskog collision term

given by Eq. (2.1b) without the Taylor expansion in space.

4. The Hydrodynamics and Thermodynamics. Through the Chapman-Enskog analysis (see Ap-

pendix B for the details), the hydrodynamic equations of the lattice Boltzmann model for dense gases, given

by Eq. (3.25) with the equilibrium of Eq. (3.18), are:

@t�+r�(�u) = 0 ;(4.1a)

@tu+ u�ru = �1

�
rP + �r2u+ a ;(4.1b)

where the viscosity

� =
(2� � g)

6g
c�x :(4.2)
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and the pressure (or the equation of state) is given by

P = � � (1 + b� g) :(4.3)

With the above equation of state, the sound speed, cs, becomes

c2s = �

�
1 + b

d

d�
(�2g)

�
:(4.4)

For ideal gas, b = 0 and g = 1, P , �, and cs recover the previous results for ideal gas. The dependence of

the viscosity, �, on g can be removed by replacing g in the BGK collision term by 1.

Although in the original work of Enskog [5], g only accommodates the volume exclusion e�ect, or repulsive

interaction, in the gas of hard spheres, however there is no reason to prohibit the inclusion of a more general

interaction. Indeed, g can be somewhat arbitrary, depending on the interaction. The radial distribution

function g provides a freedom to alter the transport coe�cients (� and cs) as well as the equation of state.

However, it should be stressed that there are bounds to this freedom. From Eq. (4.2), it becomes obvious

that the model is stable if and only if � > g=2. This suggests that g also a�ects the numerical stability

of the system. In addition, the sound speed can be changed by g. But one must not expect to achieve

cs � c = �x=�t or the basic principle of physics would be violated, because c limits the speed of information

propagation in the LBE system. Therefore, there are bounds to the values of g and derivative of �2g.

With the equation of the state given, the Helmholtz free energy density can be given by:

 (�) = �

Z
P

�2
d� = � �

�
ln �+ b

Z
gd�

�
;(4.5)

because

P = �
d 

d�
�  :(4.6)

And the radial distribution function g can also be computed from either P or  . That is, with either P or  

given, one can derive all the relevant thermodynamic quantities from the free energy  . For example, given

the van der Waals equation of state:

P = � �

�
1

(1� b�)
� a

�
�

�
;(4.7)

where parameter a accounts for the mean result of attractive potential among particles [5], and according to

Eqs. (4.3) and (4.7) the radial distribution function g is

g =
1

(1� b�)
� a

b �
:

And the corresponding free energy density is

 = � �

�
ln

�
�

1� b�

�
� a

�
�

�
:

With the free energy and the equation of state de�ned, the Maxwell construction [32] to determine the

co-existence curve becomes physically meaningful and consistent. Nevertheless, care must be taken in con-

ducting the Maxwell construction in the discretized situation. The phenomena of liquid-gas phase transition

can be simulated by the model by charging the value of b

Z
gd� (or simply just b) in the free energy density

 relative to the temperature �, as indicated by Eq. (4.5). Bear in mind that the temperature � cannot

be changed, because it is a �xed constant in the isothermal LBE models. It should be noted that g should

be computed with a given potential in principle. The above manipulation to obtain g is not based upon

principles of physics. Also, the use of the free energy adds nothing to the physics of the model, it only reects

a matter of custom or preference.
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5. Analysis of Some Existing Models. What we propose in this work is a systematic construction

of the lattice Boltzmann equation in a consistent and a priori fashion, with the premise that the continuous

Boltzmann equation is adequate to describe underlying physics of the systems of interest. In particular, for

non-deal gases, one must use the Enskog equation for dense gases instead of the original Boltzmann equation

for dilute gases. In light of this view point, a survey of the existing LBE models for non-ideal gases is now

in order. We discuss two lattice Boltzmann models for non-ideal gases which are independently proposed by

Shan and Chen [59, 60], and by Swift, Osborn, and Yeomans [62, 61]. In spite of the signi�cant di�erences in

their appearances and in technical details, these models do share one common feature in their constructions

of the lattice Boltzmann model for non-ideal gases: The derivation of the lattice Boltzmann models is mainly

accomplished by constructing a phenomenological equilibrium distribution function which can accommodate

non-ideal gas e�ects and satis�es all the conservation constraints, and therefore leads to hydrodynamics. In

what follows, we shall analyze these two models and explicitly demonstrate the di�erence between the model

derived in this paper and the aforementioned two.

5.1. Model with interacting potential. In the model proposed by Shan and Chen [59, 60], a local

density-dependent potential U(�(x)) � G� 2(�) is explicitly given, where G is the interaction strength and

 is an arbitrary function of density �. The change of the particle velocity � (not the macroscopic velocity

u) due to U(x) is

�� = �rU(x) ��t = a ��t ;

and �u = ��� is explicitly substituted into the equilibrium distribution function, i.e.,

f (eq)� = w� �

�
1 +

3[e� �(u� a��t)]

c2
+

9[e� �(u� a��t)]
2

2c4
� 3(u� a�t)

2

2c2

�

= w� �

�
1 +

3(e� �u)
c2

+
9(e� �u)2

2c4
� 3u2

2c2

�
� 3w� �

�
1

c2
(e� � u) + 3

(e� �u)
c4

e�

�
�a ��t(5.1)

�3

2
w� �

�
a2

c2
� (e� �a)2

c4

�
�2�2t :

In the above result, the �rst part is the usual equilibrium distribution function which has an ideal gas equation

of state built in, and the second part accounts for the interaction or non-ideal gas e�ects, which is identical

to the forcing term given by Eq. (3.20), produced by the forcing term a �r�f in the streaming operator.

By combining the forcing with the pressure term in the Navier-Stokes equation, the equation of the state

becomes P = � [� + U(�)]. Thus, non-ideal gas e�ects are obtained through the phenomenological potential

U . To achieve the purpose of mimicking non-ideal gas e�ects, the leading term in the density expansion of U

has to be of second-order in �, i.e., U � G��2, or  � �, as speci�cally indicated in [59, 60]. Obviously, the

potential U(�(x)) is intended to be the inter-particle interaction. However, it is mathematically implemented

as an external �eld such that its only e�ect is producing a term rU in the momentum equation [59, 60]. The

consequence of this conceptual confusion is that the energy balance equation is incorrect, because the result

of an external �eld is the work of �a � u, while the result of the inter-particle interaction is a heat-transfer

due to the viscous e�ect, as shown in Appendix B. Speci�cally, in the energy equation, the correct term

related to the pressure is Pr�u, where pressure is exactly the one that appears in the momentum equation.

However, with the one-body interaction, this becomes � �r� u+ �rU � u, i.e., the equation of state is not

the same in the momentum equation and the energy equation. Furthermore, the third part in Eq. (5.1),

which is proportional to �2t and nonlinear in a, is omitted. This term can be signi�cant when �t is set to

12



unity, as it is a common practice in the lattice Boltzmann simulations. It should also be pointed out that

the viscosity in this model remains intact | it is not a�ected by the potential U .

We have also noted a recent attempt to theoretically justify the model of Shan and Chen [27]. With

some crude approximations [27], He et al. showed that a desirable forcing term to mimic non-ideal gas

e�ects is F� � f
(eq)
� (e��u)�F �t, where F � �rV � b��gr ln(�2g), and V = �2a���r2� accounts for the

attractive part in the inter-particle interaction. Without any surprise, this model reproduces an anticipated

non-ideal gas equation of state, P � � � (1 + b�g) + �V , and avoids the nonlinear term of �2t in the model of

interacting potential, as expected. However, the energy balance equation from this model is still incorrect,

due to the similarity to the previous model. It should also be noted that it is conceptually incorrect to write

the pressure as P � � � (1 + b�g) + �V . One correct way to generalize the van der Waals equation of state

is writing it as the following [4]:

P + a�2 = �� (1 + b�g) ;(5.2)

where parameter a is related to the two-body interaction potential by:

a = �2

3

�

m2

Z
dV (r)

dr
r3dr :(5.3)

In the Enskog equation, g is obtained from a hard-sphere gas, thus the attractive potential has to be inserted

through parameter a.

It is clear that the inter-particle interactions are conceived mathematically as external �elds in the afore-

mentioned models. Perhaps the only plausible justi�cation for this view is that the inter-particle interaction

can be approximated by a self-consistent one-body interaction �eld (as in the Vlasov approximation for

Coulomb gases). In this case,Z
dx2d�2r2V12 � r�f2(x; �; x2; �2; t)r�f(x; �; t) �

Z
dx2d�2 f(x2; �2; t)r2V12 = r�f � r �U ;(5.4)

where the Boltzmann approximation has been invoked, and

r �U =

Z
dx2d�2 f(x2; �2; t)r2V12

de�nes the self-inconsistent mean-�eld potential �U . This approximation is justi�ed for rare�ed collisionless

plasma with Coulomb interactions, and is simply inappropriate for non-ideal gas systems.

5.2. Model with free energy. A comparison with the model proposed in [62, 61] is slightly more

elaborate. Stressing the consistency of thermodynamics in the lattice Boltzmann equation and being inspired

by Cahn-Hilliard's model for surface tension [3, 13], the model proposed by Swift et al. [62, 61] starts with

a free energy functional:

	 =

Z
dx
h�
2
kr�k2 +  (�)

i
;(5.5)

where  is the bulk free energy density. The free energy functional in turn determines the diagonal term of

the pressure tensor:

P = �
�	

��
�	 = p� ��r2�� �

2
kr�k2 ;(5.6)

where

p = �
d 

d�
�  (5.7)
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is the equation of state of the uid. The full pressure tensor is given by

Pij = P �ij + � @i� @j� :(5.8)

With the pressure tensor given, the equilibrium distribution function is constructed such that not only it

satis�es the conservation constraints of Eqs. (3.26), but it also produces the above pressure tensor by enforcing

additional constrains
P

� f
(eq)
� e�;ie�;j = Pij [62, 61], even though Eq. (5.8) is fundamentally incorrect.

To make our analysis as transparent as possible, it is crucial to make an explicit connection between the

model of Swift et al. to the model of Shan and Chen. The equilibrium distribution function in the model of

Swift et al. with triangular lattice [62, 61] can be rewritten as follows:

f (eq)� =
1

3
�

�
1 + (e� � u) + 2(e� � u)2 � 1

2
u2

�

+
�

3

�
(e2�;x � e2�;y)

�
(@x�)

2 � (@y�)
2
�
+ 2e�;xe�;y@x� @y�

	� �

3
�r2�+

1

3
[� 0(�)�  (�)� �](5.9)

where c = �x=�t is assumed to be unity. The term in brackets [ ] is nothing but the usual equilibrium

distribution function of the 7-bit model [25, 26]. The term in bracket f g is an expression for the tensor

Eij � (e�;i@i�)(e�;j@j�) written in terms of a traceless and an o�-diagonal part with correct symmetry

such that all the terms proportional to � reduce to the term �[�r2�+ kr�k2=2] in the diagonal part of the

pressure tensor, given by Eq. (5.6). This term is directly taken from Cahn-Hilliard's model and it induces

surface tension due to density gradient in addition to the part due to the (non-ideal gas) equation of state,

but it does not contribute to the hydrodynamic pressure (or the equation of state). The non-ideal gas part

in the equation of state is contained in the last part the above equation: [� 0(�) �  (�) � �]=3, which can

be written in a density expansion in general:

� ' � 1

3
[� 0(�)�  (�)� �] = � �2 (B + C�+ � � �)(5.10)

where coe�cients B, C, � � � are virial coe�cients. We have noted that only the leading term in the density

expansion of ', B�2, is needed in order to capture the non-ideal gas e�ects, for this term not only leads to

a non-ideal gas equation of state, but also provides all the necessary terms to control the surface tension

in Cahn-Hilliard's model, because rr�2 = 2(�r2� + kr�k2). By comparing Eq. (5.9) to Eq. (5.1), the

connection between the model of Swift et al. and the model of Shan and Chen becomes obvious if Eq. (3.23)

for the forcing term is used and the equivalence of � ' = e� � rU � F� is established. Thus, the model of

Swift et al. uses Eq. (3.23) for the forcing term, which is only valid for a constant body force, whereas the

model of Shan and Chen uses Eq. (3.20) for the forcing term. The interaction strength in the model of Swift

et al. is proportional to temperature � (which is incorrect for isothermal uids), whereas in the model of

Shan and Chen, it is proportional to a constant G. Since the connection of the two models can be explicitly

established, all the analysis in the previous subsection can be immediately applied to the present model.

It should be pointed out that at the level of the Boltzmann equation, the density gradient term, kr�k2, in
the free energy functional has no justi�cation whatsoever within the framework of Chapman-Enskog analysis.

[In fact, the density gradient r� can only appear in the second order solution of f (the Burnett equation

[5]) in the Chapman-Enskog analysis, which is beyond the Navier-Stokes equations.] It is clear that the

analysis presented in [62, 61] and the subsequent work [51, 50] does not follow the Chapman-Enskog analysis;

therefore, it cannot lead to a mathematically valid derivation of macroscopic equations from the mesoscopic

equation. Consequently, the derivation of macroscopic equations from the model becomes dubious, and the

model su�ers from a number of unexpected adverse e�ects which are discussed next.
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First, the model lacks Galilean invariance, mainly because of the forcing term F� � � '. This defect

can be �xed by using a correct forcing term according to Eq. (3.20): F� � �[(e� � u) + 3(e� � u)e�] � r'.
However, there are other terms involving the density gradient which also cause the problem of lack of Galilean

invariance [31]. Second, the ratio between the number of rest particles and the number of moving particles

depends on the local density gradient. It can be shown that this ratio is related to temperature, because in

the two-speed system, the width of the equilibrium distribution, which is the temperature, is determined by

this ratio. [To be exact, according to the de�nition of !, Eq. (3.4), the ratio !(0)=!(c) = ec
2=2�, which must

be a constant in isothermal uids.] This means that the temperature may vary locally depending on the

density gradient while the model is claimed to simulate an isothermal uid. Again, this problem can be �xed

by using the correct forcing term aforementioned. In addition, the model cannot lead to the correct energy

balance equation for the very same reason, as shown in the previous subsection, that the terms related to the

free energy can be considered as a body-force due to a thermodynamic potential (free energy in the model)

which is a mean-�eld quantity.

We stress that the conceptual di�culty caused by the confusion between body-force and interaction

cannot be circumvented by technical tricks such as using a correct forcing term, or including higher order

terms in u in the equilibrium distribution function f
(eq)
� . The reason is obvious: as long as a mean-�eld

potential, whether an interaction or a free energy, is employed to mimic non-ideal gas e�ects, the constraints

of Eqs. (3.8) must be satis�ed, therefore the inconsistency of the pressure between the momentum equation

and the energy equation arises, regardless of the order (in u) of the equilibrium distribution function | this

is true even in the continuum case. Furthermore, certain terms in the pressure tensor, Pij , were arbitrarily

omitted in the Navier-Stokes equation derived from the model [62, 61]. Therefore, the use of Pij is ad hoc

at best. Following the above analysis, one can also conclude that the multi-component model constructed

in the same manner [51, 50] su�ers from the same problems. One distinctive feature of this model is that,

by using Cahn-Hilliard's model, the surface tension can be controlled independently of the equation of state

by the density gradient. This appears to be the reason why the spurious mass ux is reduced in this model

[62, 61].

Most likely, the aforementioned problems were not discovered in [62, 61, 51, 50], because all the tests

conducted in [62, 61, 51, 50] were not designed to test hydrodynamics per se, they were designed to test other

properties such as the equilibrium density pro�les and Laplace's law, which are related more to spinodal

decomposition than to hydrodynamics, and can be well produced by other lattice Boltzmann models [21, 18,

19, 20, 46], or even models without hydrodynamics, such as Cahn-Hilliard's model [3, 13]. In fact, it has been

shown that the model of Swift et al. does not satisfy the Navier-Stokes equation, in either the bulk region

or interface region, although it does possess conserved quantities [31]. Numerous simple hydrodynamic

tests showed that the departure of the model from the Navier-Stokes equation is quite signi�cant both

quantitatively and qualitatively [31]. For instance, when the model is used to simulate a simple hydrodynamic

problem such as a single droplet subject to shear [64], the simulation [64] does not produce any credible

quantitative hydrodynamic results because the model does not even satisfy the Navier-Stokes equation. The

best that the kind of simulations presented in a recent work by Wagner and Yeomans [64] can provide is

some vague, poor, qualitative description of ow phenomena, which is often incorrect. Therefore we doubt

the validity of numerical predictions made by the model.

It should also be noted that the Hamiltonian approach [59, 60] and the free energy approach [62, 61, 51,

50] are indeed equivalent in terms of phenomenology. Given a Hamiltonian H of an interacting N -particle
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system, the corresponding free energy 	 can be obtained via the partition function based upon H:

H =

NX
i=1

�
1

2
mi�

2
i + U(xi)

�
+
X
i<j

V (jxi � xj j) ;(5.11)

where �i and xi are the phase space of the i-the particle, mi is the particle mass, U(xi) is an external �eld

and V (jxi � xj j) is a mean-�eld two-body interaction potential, the partition function is

Z =

Z
dxd� exp(�H=kBT ) ;(5.12)

where (x; �) represents the entire phase space of the N -particle system. Consequently, the free energy is

given by

	 = �kBT lnZ :(5.13)

Thus, in principle information is neither gained nor lost whether the problem is formulated in terms of H
or 	. One cannot claim that using the free energy and utilizing the Maxwell construction leads to a better

or more physical model. Perhaps the only advantage of using the free energy is that 	 is a global state

variable and therefore it is independent of coordinates. However, this advantage bears no relevance in the

LBE models. In light of the thorough analysis provided above, we conclude that the claim made by Swift

[62, 61] et al. that \we show for the �rst time that it is possible to set up a lattice Boltzmann scheme modeling

isothermal hydrodynamics for two-phase systems" is unfounded.

In summary, the main di�erence between the model derived from the Enskog equation and the existing

ones is in the physics. Our starting point is the Enskog equation for dense gases in which the non-ideal gas

e�ects are naturally considered, whereas in all other existing models [59, 60, 62, 61, 51, 50, 27], the starting

point is the original Boltzmann equation which is only suitable for dilute gases (ideal gases). Beginning with

incorrect physics, one has no choice but to invoke various ad hoc approximations. Inevitably, various defects

exist in the aforementioned models. One notable feature common to these models is that the viscosity is

independent of non-ideal gas e�ects, which is inconsistent with the Enskog equation.

6. Conclusion. We are now in the position to lay out the procedure for constructing a thermody-

namically consistent lattice Boltzmann equation for non-ideal gases. Given inter-particle interactions, the

radius distribution function g can be computed in principle, and the collision term in the Enskog equation,

J 0, can be constructed. This collisional term would correctly produce the non-ideal gas e�ects. With this

term implemented in the lattice Boltzmann model, a thermodynamic and hydrodynamic consistency can be

achieved in the sense of the �nite di�erence approximation. With g given, the free energy density,  , can be

obtained explicitly. Subsequently, other pertinent thermodynamic quantities such as the equation of state,

pressure tensor, surface tension, and so on, can be directly and easily derived from the free energy while the

correct hydrodynamics is preserved in the lattice Boltzmann equation.

It should be emphasized that because the Boltzmann equation describes mesoscopic dynamics, the

constraints imposed on it must be compatible with the mesoscopic dynamics. Speci�cally speaking, given

an arbitrary interaction in a system, one can in principle compute the equation of state (e.g., by means of

the virial expansion). This is an averaging process, because macroscopic observables (the equation of state,

surface tension, etc.) are averaged macroscopic quantities. But, the reverse are not true in general: given

an arbitrary equation of state, one may not be to able to uniquely �nd a corresponding interaction in the

mesoscopic description. However, this can be achieved in the formalism of the lattice Boltzmann equation,
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owing to the simple structure of the formalism. Nevertheless, the simplicity of the LBE method does not

comes without a price | the inconsistency in the LBE thermodynamics and discrete e�ects are inherent to

the LBE models. In contrast to the LBE method, it is also worth while to mention some new approaches

more closely related to standard computational uid dynamics methods [34, 49, 33] which show promise for

dealing with the interfacial problems.

It is a fair observation that so far a large part of the lattice Boltzmann enterprise rests upon the phe-

nomenology of creating various \new" equilibrium distribution functions to accommodate di�erent physical

phenomena ranging from non-ideal gases or multi-component uids to visco-elastic media [55]. Previous

procedures to construct the equilibrium distribution can be summarized as follows. By observing the hy-

drodynamic equations of a system of interest, one can anticipate those terms in the equilibrium distribution

which are necessary to produce the desired results (usually a desirable stress tensor). Then proportionality

factors for these terms are determined by the conservation constraints. It is evident that this approach lacks

mathematical rigor and that the models derived in this fashion may su�er from arti�cial defects which are

uncontrollable, such as the models in Refs. [62, 61, 51, 50, 55]. The problem common to these models is

that the mathematical rigor of the Chapman-Enskog analysis has been completely ignored, as typi�ed by

the work in [62, 61].

It is important to point out that the rigor of the Chapman-Enskog analysis can be retained without

following the viewpoint of deriving lattice Boltzmann models via discretization of the corresponding contin-

uous kinetic equation. Given a set of discrete velocities on a lattice space with a collision operator obeying

conservation laws and associated symmetries, an orthogonal basis spanned by the eigenvectors of the collision

operator can be obtained [8, 16, 17]. The kinetic modes of the basis, which are uxes, can have di�erent

relaxation times [8, 16, 17]. Not only does this approach overcome some shortcomings of the single relaxation

time method such as a �xed Prandtl number, but it also follows the Chapman-Enskog analysis rigorously.

We suspect that this approach may be equivalent to a discrete version of the hierarchy of kinetic equations

proposed by Levermore [39].

In this paper we carry out a systematic derivation of the lattice Boltzmann equation for non-ideal gases

from the Enskog equation. It should be stressed that the procedure illustrated here is general and can be

easily extended to other lattice Boltzmann models, e.g., multi-component models [21, 18, 19, 20]. This

procedure can also be used to improve the accuracy of the lattice Boltzmann models systematically. Our

procedure can be briey summarized as follows. First of all, one can observe the equation of state of a system,

and extract the non-ideal gas part in it. This part is related to the radial distribution function g. From g,

the additional collision term responsible for it can be constructed. Then one can systematically discretize the

Enskog equation with the additional collision term to obtain the corresponding lattice Boltzmann equation.

This approach is not only rigorous, but also systematic. The equilibrium distribution is uniquely determined

in this procedure. It enables one to see clearly what approximation is made in the derivation of the lattice

Boltzmann equation. In this way it can be shown that the accuracy of the lattice Boltzmann equation is

indeed �rst order in time and second order in space [67].

In additional to an a priori derivation of the lattice Boltzmann model for non-ideal gases, we explicitly

illustrate the di�erences between our model and existing ones. Based upon our analysis, we can conclude

that the problem in the model of interacting potential [59, 60] is a minor one and can be easily �xed by

either directly using a forcing term as we proposed, or adding a correction to remove the �2t dependent

terms. In contrast to the model of interacting potential, the model of free energy [62, 61] presents many

major problems. It starts with an intention to correct the thermodynamic inconsistency in other models,
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but it ends up with more serious inconsistencies, because the pressure tensor in the model is constructed

without any physical basis at the level of the Boltzmann equation. It is also important to point out that

none of these models can lead to the correct energy balance equation, and therefore they are inconsistent

with their continuous counterpart | the Boltzmann equation. Starting with the Enskog equation in the

presence of an external �eld and through a rigorous discretization procedure, we can obtain a consistent

thermodynamics and hydrodynamics for non-ideal gases in the sense of the discretizing approximation.

With this systematic means, one can use either an interaction or a free energy to obtain the equation of

state, that, when incorporated into a collisional term, accounts for non-ideal gas e�ects among the particles.

Our future work will extend our theory to multi-component uids, and obtain a consistent thermody-

namics for lattice Boltzmann models.
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Appendix A. Modi�ed Boltzmann Equation for Dense Gases.

The Boltzmann equation,

@tf + � �rf + a�r�f = J ;(A.1)

can be modi�ed for dense gas by explicitly considering the volume exclusion e�ect in the collision term J for

hard spheres of radius r0 as the following [5, 30, 23]:

J =

Z
d�1 [g(x+ r0r̂)f(x; �

0)f(x+ 2r0r̂; �
0
1)� g(x� r0r̂)f(x; �)f(x� 2r0r̂; �1)](A.2a)

= J (0) + J (1) + J (2) + � � � ;
J (0) = g

Z
d�1(f

0f 01 � ff1) ;(A.2b)

J (1) = r0

Z
d�1(f

0f 01 + ff1) r̂ � rg ;(A.2c)

J (2) = 2r0g

Z
d�1r̂ � (f 0rf 01 + frf1) ;(A.2d)

where g is the radial distribution function, r̂ is the unit vector pointing from the particle f1 to the particle

f , J (n), n = 0, 1, 2, . . . , are obtained by the Taylor expansion of g, f1 � f(�1), and f
0
1 � f(�01) in Eq. (A.2a)

of J about x,

d�1 = k�1 � �k� d
d�1 ;(A.3)

and � and 
 are di�erential collision cross section and the solid angle in coordinate x-space. The Enskog

equation is also called the modi�ed Boltzmann equation for dense gases in the literature [23].

The term J (0) given by Eq. (A.2b) is the usual collisional term in the Boltzmann equation with an extra

factor g, which can be approximated by the BGK approximation, i.e.,

J (0) = � g
�
[f � f (0)] ;(A.4)

where f (0) is the equilibrium distribution function of Maxwell and Boltzmann.
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The term J (1) and J (2) can be explicitly evaluated for hard sphere potential. For hard spheres of radius

r0, we have

� d
 =

(
ds = 2r0 cos#d# ; in 2D,

s ds = 2r20 sin(2#)d#d' ; in 3D,
(A.5)

where # is the azimuthal angle between the z-axis parallel to (�1 � �) and (�0 � �), and 0 � # � �=2, ' is

the polar angle on the plane perpendicular to the z-axis, and

s = 2r0 sin#(A.6)

is the impact parameter in the collision. With the approximation of f � f (0) in Eqs. (A.2c) and (A.2d), we

have

J (1) = �f (0) b � (� � u)�rg ;(A.7a)

J (2) = �f (0) b � g

�
2(� � u)�r ln �+

2

(D + 2)

(�i � ui)(�j � uj)@iuj
�

+

�
1

(D + 2)

(� � u)2

�
� 1

�
r�u +

1

2

�
D

(D + 2)

(� � u)2

�
� 1

�
(� � u)�r ln �

�
;(A.7b)

where b is the second virial coe�cient, �, u, and � = kBT=m, are mass density, velocity, and normalized

temperature of uid, respectively; m is the particle mass, and D is the dimension of the �-space. In above

equation, the Einstein notation for summation among repeated indices is used. The second virial coe�cient

for the hard sphere gas is:

b = V0=m ;(A.8)

where V0 is the volume of a hard sphere, which is 16�r30=3 in 3D, or �r20 in 2D. Note that b� = V0n, where

n is the particle number density, is a dimensionless quantity called packing fraction (for the hard-sphere

system), and g is a function of b�.

It should be noted that the collision term, J , in the Enskog equation does not conserve mass, momentum,

and energy locally, because it involves non-local interactions [5]. However, mass, momentum, and energy

are conserved globally. The non-local interaction is expected to produce non-ideal gas e�ects due to the

exclusive volume in momentum and energy equations in hydrodynamics. The �rst term in the expansion of

J , J (0), is the usual collision term in the original Boltzmann equation for dilute gases (multiplied by a factor

g), and it conserves mass, momentum, and energy locally. Other terms, J (n) for n � 1, do not conserve

mass, momentum, and energy locally, they are responsible for the ux (of mass, momentum, and energy)

transfer due to non-local interactions.

To the �rst order approximation in the Chapman-Enskog analysis, only J (0), J (1), and J (2) shall be

retained in the modi�ed Boltzmann equation for the dense gases. Higher order collisional terms, J (n), n � 3,

are neglected because they are involved higher order or higher power of gradients of �, u, and �. The term

J (2) can be simplify for incompressible and isothermal uids. In that case, the last two terms in Eq. (A.7b)

vanish. Then the term of @iuj must be neglected owing to the conservation constraints. The term of r� can
be included into J 0 by

J 0 = �f (0) b� (� � u)�[rg + gr ln �2]� f (0) b� g (� � u)�r ln(�2g) :(A.9)

It is clear that J 0 conserves mass locally. However, it is responsible for ux transfer due to the non-local

interaction. The �rst order moment of J 0, which is the mass ux, gives the part of the equation of state
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attributed to non-ideal gas e�ects:Z
d� �J 0 = �b� g

Z
d� f (0)� (� � u)�r ln(�2g) � b ��2gr ln(�2g) = �r(� b�2g) :(A.10)

Combining with the ideal gas part of the equation of state, ��, we obtain the total equation of state:

P = � � (1 + b�g) :(A.11)

For hard sphere gases, the radius distribution function g is known as up to (b�)3 [5, 30].

The energy transfer due to the e�ect of J 0 is:

1

2

Z
d� �2J 0 = �1

2
b� g

Z
d� f (0)�2 (� � u)�r ln(�2g) � u�r(� b�2g) :(A.12)

This correctly corresponds to the non-ideal gas thermal equation of state, Eq. (A.11).

Appendix B. Chapman-Enskog Analysis of Lattice Boltzmann Equation.

By introducing the following expansions [41, 24]:

f�(x+ e��t; t+ �t) =

1X
n=0

�n

n!
Dn
t f�(x; t) ;(B.1a)

f� =
1X
n=0

�nf (n)� ;(B.1b)

@t =

1X
n=0

�n@tn ;(B.1c)

where � = �t and Dt � (@t + e� �r), we can rewrite the lattice Boltzmann equation with a forcing term

f�(x+ e��t; t+ �t)� f�(x; t) = �g
�
[f�(x; t)� f (eq)� (x; t)] + J 0��t � F��t(B.2)

in the consecutive order of the parameter � as follows:

�0 : f (0)� = f (eq)� ;(B.3a)

�1 : f (1)� = ��
g
Dt0f

(0)
� ;(B.3b)

�2 : f (2)� = � �

2g

�D2
t0 + 2@t1

�
f (0)� � �

g
Dt0f

(1)
� ;(B.3c)

where Dtn � (@tn + e� �r). Note that both F� and J 0� in Eq. (B.2) do not appear in the above equations.

However, they will appear in the governing equations in what follows. The distribution function f� is the

normal solution which is constrained by:

X
�

f (0)�

"
1

e�

#
=

"
�

�u

#
;(B.4a)

X
�

f (n)�

"
1

e�

#
=

"
0

0

#
; n > 0 ;(B.4b)

where the equilibrium f
(0)
� (for the 9-bit model) is given by:

f (eq)� = w� �

�
1 + 3

(e��u)
c2

+
9

2

(e��u)2
c4

� 3

2

u2

c2

�
:(B.5)
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The additional collision term, J 0�, which is responsible for the volume exclusion e�ect in dense gases, is given

by

J 0� = �f (eq)� b � g (e� � u)�r ln(�2g) :(B.6)

The forcing term, F�, for the nine-velocity model, is given by,

F� = �3w� �

�
1

c2
(e� � u) + 3

(e� �u)
c4

e�

�
�a ;(B.7)

which satis�es the following constraints:X
�

F� = 0 ;(B.8a)

X
�

e�F� = ��a ;(B.8b)

X
�

e�;ie�;jF� = �� (uiaj + ujai) :(B.8c)

Also, f� is a Chapman-Enskog ansatz, f(x; �; t) = f(x; �; �; u; �), i.e., the temporal dependence of f� is

through the hydrodynamic variables �, u and �. Therefore,

@tf� =
@f�
@�

@t�+
@f�
@u

@tu(B.9)

for isothermal uids.

For the 9-bit model, we have: X
�

f (0)

� = � ;(B.10a)

X
�

e�f
(0)

� = �u ;(B.10b)

X
�

e�;ie�;jf
(0)

� = ���ij + �uiuj ;(B.10c)

X
�

e�;ie�;je�;kf
(0)

� = ���ijkl ul ;(B.10d)

and X
�

J 0� = 0 ;(B.11a)

X
�

e�J
0
� = �� br(�2g) ;(B.11b)

X
�

e�;ie�;jJ
0
� = b [uiuju�r � � (ui@j + uj@i)] (�

2g) ;(B.11c)

where �ij and �ijkl are the Kronecker delta with two and four indices, respectively, and

�ijkl = �ij�kl + �ik�jl + �il�jk :(B.12)

The governing equations of f� up to the order of � are:

Dt0f
(0) = �g

�
f (1) + J 0� � F� ;(B.13a)

@t1f
(0) +

(2� � g)

2�
Dt0f

(1) = � g
�
f (2) :(B.13b)
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In the derivation of Eq. (B.13b), we have made the following approximation that Dt0g � 0, which is accurate

up to O(u2). The moments of the �rst order governing equation, Eq. (B.13a), lead to the Euler equations:

@t0�+r�(�u) = 0 ;(B.14a)

@t0(�u) +r��(0) = F � � br(�2g) ;(B.14b)

where �(0) =
P

� e�e�f
(0)
� is the zeroth-order momentum ux tensor. With �

(0)
ij given by Eq. (B.10c), the

above equations can be rewritten as:

@t0�+r�(�u) = 0 ;(B.15a)

@t0u+ u �ru = �1

�
rP + a ;(B.15b)

where a = F =� is the acceleration, and

P = � � (1 + b� g)(B.16)

is the equation of state for non-ideal gas, depending on the radial distribution function g. (Note that for the

nine-velocity isothermal model here, � = c2=3.)

The moments of the second order governing equation, Eq. (B.13b), lead to the following equations:

@t1� = 0 ;(B.17a)

@t1(�u) +
(2� � g)

2�
r��(1) = 0 ;(B.17b)

where �(1) =
P

� e�e�f
(1)
� is the �rst-order momentum ux tensor. With the aid of Eqs. (B.10) and (B.15),

we have:

�
(1)
ij =

X
�

e�;ie�;jf
(1)
� = ��

g

X
�

e�;ie�;jDt0f
(0)
� = ��

g

h
@t0�

(0)
ij + � (r��u �ij + @i�uj + @j�ui)

i

= ��
g
[� (@t0�+r��u) �ij + @t0(�uiuj) + � (@i�uj + @j�ui)] = ��

g
� � (@iuj + @jui) +O(M3) ;

where @i = @=@xi. In the above result of �
(1)
ij , the terms such as ui@j� have been neglected because r� is

of the order O(M2), and it is done consistent with the small velocity expansion of f
(eq)
� up to the order of

O(u2). [Note that O(u) = O(M), therefore we take the liberty to interchange these notations.] Similarly,

we have

@j�
(1)
ij = ��

g
� � @j(@iuj + @jui) +O(M3)

= ��
g
� � (@ir�u+r2ui) +O(M3) = ��

g
� �r2ui +O(M3) ;(B.18)

where the term r�u has been neglected because it is of O(M2) due to Eq. (B.15a).

Combining the �rst and the second order results [Eqs. (B.14) and (B.17)] together by @t = @t0 +�@t1 and

recalling that � = �t, we have the Navier-Stokes equations [accurate up to the order of O(M2) in momentum

equation]:

@t�+r�(�u) = 0 ;(B.19a)

@tu+ u�ru = �1

�
rP + �r2u+ a ;(B.19b)
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where the viscosity is given by

� = (
�

g
� 1

2
) � �t =

(2� � g)

6g

�2x
�t
;

and the pressure (the equation of state) is given by

P = � � (1 + b� g) =
1

3
c2 � (1 + b� g) ;(B.20)

where � = c2=3 has been substituted. With the above equation of state, the sound speed, cs, is given by

c2s = �

�
1 +

d

d�
(b�2 g)

�
=

1

3
c2
�
1 +

d

d�
(b�2 g)

�
:(B.21)

It should be pointed out that, if instead of Eq. (B.8c), the following constraint is imposed:X
�

e�;ie�;jF� = 0 ;(B.22)

then, the term �a�u, which is the work done by the force, does not appear in the energy balance equation.

Therefore, the constraint of Eq. (B.8c) must be imposed to assure a correct energy balance equation.

Appendix C. Equilibrium Distribution Function Shifted by Acceleration.

If we start with the BGK Boltzmann equation without a forcing term:

@tf + � �rf = � 1

��t
[f � f (0)] ;(C.1)

and assume that particle is impulsively accelerated by acceleration a with the mean free time ��t. Under

this circumstance, the equilibrium distribution function becomes [66]:

f (0)(�; u� a��t; �) = � (2��)�D=2 exp
��(� � u+ a��t)

2=2�
�
:(C.2)

Accordingly,

f (eq) = � (2��)�D=2 exp(��2=2�)�
�
1 +

� �(u� a��t)

�
+

[� �(u� a��t)]
2

2�2
� (u� a��t)

2

2�

�

= �!(�)

�
1 +

� �u
�

+
(� �u)2
2�2

� u2

2�

�
m

�
(� � u) +

m2 (� �u)
�2

�

�
�a ��t

�
:(C.3)

Here we have consistently ignored the terms of the order O(�2t ) or higher order. Substituting � = c2=3, where

c � �x=�t, we have

f (eq)� = w� �

�
1 +

3(e� � u)
c2

+
9(e� � u)2

2c4
� 3u2

2c2

�
� 3w� � ��t

�
1

c2
(e� � u) +

3(e� �u)
c4

e�

�
�a :(C.4)

The second part of f
(eq)
� exactly produces the forcing term F� obtained previously when f

(eq)
� is substituted

into the following lattice Boltzmann equation without a forcing term:

f�(x+ e��t; t+ �t)� f�(x; t) = �1

�

h
f�(x; t)� f (eq)� (x; t)

i
:(C.5)
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